Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 8 - Complex Numbers, Polar Equations, and Parametric Equations - Section 8.4 De Moivre's Theorem: Powers and Roots of Complex Numbers - 8.4 Exercises - Page 376: 13

Answer

The three cube roots are: $z^{1/3} = 1$ $z^{1/3} = -\frac{1}{2}+i~(\frac{\sqrt{3}}{2})$ $z^{1/3} = -\frac{1}{2}-i~(\frac{\sqrt{3}}{2})$

Work Step by Step

$z = cos~0^{\circ}+i~sin~0^{\circ}$ $r = 1$ and $\theta = 0^{\circ}$ We can use this equation to find the cube roots: $z^{1/n} = r^{1/n}~[cos(\frac{\theta}{n}+\frac{2\pi~k}{n})+i~sin(\frac{\theta}{n}+\frac{2\pi~k}{n})]$, where $k \in \{0, 1, 2,...,n-1\}$ When k = 0: $z^{1/3} = 1^{1/3}~[cos(\frac{0^{\circ}}{3}+\frac{(2\pi)(0)}{3})+i~sin(\frac{0^{\circ}}{3}+\frac{(2\pi)(0)}{3})]$ $z^{1/3} = 1~[cos(0)+i~sin(0)]$ $z^{1/3} = 1~[1+i~(0)]$ $z^{1/3} = 1$ When k = 1: $z^{1/3} = 1^{1/3}~[cos(\frac{0^{\circ}}{3}+\frac{(2\pi)(1)}{3})+i~sin(\frac{0^{\circ}}{3}+\frac{(2\pi)(1)}{3})]$ $z^{1/3} = 1~[cos(\frac{2\pi}{3})+i~sin(\frac{2\pi}{3})]$ $z^{1/3} = 1~[-\frac{1}{2}+i~(\frac{\sqrt{3}}{2})]$ $z^{1/3} = -\frac{1}{2}+i~(\frac{\sqrt{3}}{2})$ When k = 2: $z^{1/3} = 1^{1/3}~[cos(\frac{0^{\circ}}{3}+\frac{(2\pi)(2)}{3})+i~sin(\frac{0^{\circ}}{3}+\frac{(2\pi)(2)}{3})]$ $z^{1/3} = 1~[cos(\frac{4\pi}{3})+i~sin(\frac{4\pi}{3})]$ $z^{1/3} = 1~[-\frac{1}{2}-i~(\frac{\sqrt{3}}{2})]$ $z^{1/3} = -\frac{1}{2}-i~(\frac{\sqrt{3}}{2})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.