Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 5 - Trigonometric Identities - Section 5.4 Sum and Difference Identities for Sine and Tangent - 5.4 Exercises - Page 220: 6

Answer

$$\tan(-105^\circ)=2+\sqrt 3$$ D is the correct answer.

Work Step by Step

$$\tan(-105^\circ)$$ We see that $$\tan(-105^\circ)=\frac{\sin(-105^\circ)}{\cos(-105^\circ)}$$ and $\sin(-105^\circ)=-\sin105^\circ$ and $\cos(-105^\circ)=\cos105^\circ$. That means, $$\tan(-105^\circ)=\frac{-\sin(105^\circ)}{\cos(105^\circ)}=-\tan105^\circ$$ So now we only need to find the value of $\tan105^\circ$, by taking the sum of $60^\circ$ and $45^\circ$. $$\tan105^\circ=\tan(60^\circ+45^\circ)$$ $$=\frac{\tan60^\circ+\tan45^\circ}{1-\tan60^\circ\tan45^\circ}$$ $$=\frac{\sqrt 3+1}{1-1\times\sqrt 3}$$ $$=\frac{\sqrt 3+1}{1-\sqrt 3}$$ $$=\frac{\sqrt 3+1}{1-\sqrt 3}\times\frac{1+\sqrt 3}{1+\sqrt 3}$$ $$=\frac{(\sqrt 3+1)^2}{1-3}$$ $$=\frac{4+2\sqrt 3}{-2}$$ $$=-2-\sqrt 3$$ Therefore, $\tan(-105^\circ)=-\tan105^\circ=2+\sqrt 3$ D is the correct answer.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.