Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 5 - Trigonometric Identities - Section 5.4 Sum and Difference Identities for Sine and Tangent - 5.4 Exercises - Page 220: 5

Answer

$$\sin(-105^\circ)=\frac{-\sqrt2-\sqrt6}{4}$$ 5 would be matched with B.

Work Step by Step

$$\sin(-105^\circ)$$ Remember the Negative-angle Identities: $$\sin(-\theta)=-\sin\theta$$ So, $$\sin(-105^\circ)=-\sin105^\circ$$ Now, we rewrite $105^\circ$ as the sum of $45^\circ$ and $60^\circ$. $$105^\circ=45^\circ+60^\circ$$ Therefore, $$-\sin105^\circ=-\sin(45^\circ+60^\circ)$$ Now we apply the sine sum identity, which states $$\sin(A+B)=\sin A\cos B+\cos A\sin B$$ That makes $$-\sin105^\circ=-(\sin 45^\circ\cos60^\circ+\cos45^\circ\sin60^\circ)$$ $$-\sin105^\circ=-\Big(\frac{\sqrt2}{2}\frac{1}{2}+\frac{\sqrt2}{2}\frac{\sqrt3}{2}\Big)$$ $$-\sin105^\circ=-\Big(\frac{\sqrt2}{4}+\frac{\sqrt6}{4}\Big)$$ $$-\sin105^\circ=\frac{-\sqrt2-\sqrt6}{4}$$ Therefore, $$\sin(-105^\circ)=\frac{-\sqrt2-\sqrt6}{4}$$ 5 would be matched with B.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.