#### Answer

The solution set of this problem, written in standard form, is $$\Big\{1\pm i\Big\}$$

#### Work Step by Step

$$x^2+2=2x$$
The equation is not in standard form, so first, we need to bring it back to standard form:
$$x^2-2x+2=0$$
Now the equation is in standard form, the quadratic formula can be applied.
$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
As $a=1, b=-2, c=2$
$$x=\frac{-(-2)\pm\sqrt{(-2)^2-4\times1\times2}}{2\times1}$$
$$x=\frac{2\pm\sqrt{4-8}}{2}$$
$$x=\frac{2\pm\sqrt{-4}}{2}$$
Now we rewrite $\sqrt{-4}=i\sqrt{4}=2i$
$$x=\frac{2\pm 2i}{2}$$
Finally, we simplify
$$x=1\pm i$$
The solution set of this problem, written in standard form, is $$\Big\{1\pm i\Big\}$$