Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 6 - Inverse Circular Functions and Trigonometric Equations - Section 6.4 Equations Involving Inverse Trigonometric Functions - 6.4 Exercises - Page 286: 33



Work Step by Step

Given: $arcsinx=arctan\frac{3}{4}$ Consider $arctan\frac{3}{4}=P$ $tan P=\frac{3}{4}$ Apply trigonometric identity for tangent. $tanx=\frac{opp}{adj}=\frac{3}{4}$ Thus, $hyp=\sqrt {3^{2}+4^{2}}$ Likewise, $sinP=\frac{opp}{hyp}=\frac{3}{5}$ $arcsinx=P$ gives $x=sinP$ Hence, $x=\frac{3}{5}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.