Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 7 - Section 7.4 - Assess Your Understanding - Vocabulary and Skill Building - Page 392: 20

Answer

$P(X = 70) = \frac{85!}{70!(85-70)!} \times 0.8^{70} \times (1 - 0.8)^{(85-70)}= 0.0970$ $P(z < 0.68) - P(z < 0.41) = 0.0927$

Work Step by Step

Here we have: n = 85, p = 0.8, x = 70 Using the binomial probability formula: $P(X = 70) = \frac{85!}{70!(85-70)!} \times 0.8^{70} \times (1 - 0.8)^{(85-70)}= 0.0970$ Check whether the normal distribution can be used as an approximation for the binomial distribution: $np(1-p) = 85 x 0.8 (1 - 0.8) = 13.6 \gt 10$ Hence, the normal distribution can be used. $μ_{x} = np = 85 \times 0.8 = 68$ $σ_{x} = \sqrt {np(1-p)} = \sqrt {68 (0.2)} = 3.69$ $z = \frac{x - μ_{x}}{σ_{x}} = \frac{69.5 - 68}{3.69} = 0.41$ $z = \frac{x - μ_{x}}{σ_{x}} = \frac{70.5 - 68}{3.69} = 0.68$ $P(X = 70) = P(69.5 < X < 70.5) = P(0.41 < z < 0.68)$ $P(z < 0.68) - P(z < 0.41) = 0.7517 - 0.6591 = 0.0927$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.