Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 7 - Section 7.4 - Assess Your Understanding - Vocabulary and Skill Building - Page 392: 19

Answer

$P(X = 60) = \frac{75!}{60!(75-60)!} \times 0.75^{60} \times (1 - 0.75)^{(75-60)}= 0.0677$ $P(z < 1.13) - P(z < 0.87) = 0.0630$

Work Step by Step

Here we have: n = 75, p = 0.75, x = 60 Using the binomial probability formula: $P(X = 60) = \frac{75!}{60!(75-60)!} \times 0.75^{60} \times (1 - 0.75)^{(75-60)}$ = 0.0677 Check whether the normal distribution can be used as an approximation for the binomial distribution: $np(1-p) = 75 x 0.75 (1 - 0.75) = 14.1 \gt 10$ Hence, the normal distribution can be used. $μ_{x} = np = 75 \times 0.75 = 56.25$ $σ_{x} = \sqrt {np(1-p)} = \sqrt {56.25 (0.25)} = 3.75$ $z = \frac{x - μ_{x}}{σ_{x}} = \frac{59.5 - 56.25}{3.75} =0.87$ $z = \frac{x - μ_{x}}{σ_{x}} = \frac{60.5 - 56.25}{3.75} = 1.13$ $P(X = 60) = P(59.5 < X < 60.5) = P(0.87 < z < 1.13)$ $P(z < 1.13) - P(z < 0.87) = 0.8708 - 0.8078 = 0.0630$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.