Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 7 - Section 7.4 - Assess Your Understanding - Vocabulary and Skill Building - Page 392: 16

Answer

$P(X = 18) = \frac{80!}{18!(80-18)!} \times 0.15^{18} \times (1 - 0.15)^{(80-18)}= 0.2208$ $P(z < 2.04) - P(z < 1.72) = 0.0220$

Work Step by Step

Here we have: n = 80, p = 0.15, x = 18 Using the binomial probability formula: $P(X = 18) = \frac{80!}{18!(80-18)!} \times 0.15^{18} \times (1 - 0.15)^{(80-18)}= 0.2208$ Check whether the normal distribution can be used as an approximation for the binomial distribution: $np(1-p) = 80 x 0.15 (1 - 0.15) = 10.2\ge 10$ Hence, the normal distribution can be used. $μ_{x} = np = 80 \times 0.15 = 12$ $σ_{x} = \sqrt {np(1-p)} = \sqrt {12 (0.85)} = 3.19$ $z = \frac{x - μ_{x}}{σ_{x}} = \frac{17.5 - 12}{3.19} = 1.72$ $z = \frac{x - μ_{x}}{σ_{x}} = \frac{18.5 - 24}{3.19} = 2.04$ $P(X = 18) = P(17.5 < X < 18.5) = P(1.72 < z < 2.04)$ $P(z < 2.04) - P(z < 1.72) = 0.9739 - 0.9573 = 0.0220$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.