Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 7 - Section 7.4 - Assess Your Understanding - Applying the Concepts - Page 392: 21d

Answer

$P(125 \leq x \leq 135)$ $\approx$ 0.5536

Work Step by Step

i) Verify that we can use the normal approximation to the binomial $np(1-p) \geq 10$ = $135(0.90)(0.10) \geq$ 10 = $13.5 \geq 10$ Yes, we can use the normal distribution to approximate the binomial ii) Find mean and standard deviation of the data $\mu = np = 150 \times 0.90 = 135$ $\sigma = \sqrt {np(1-p)} = \sqrt{13.5}$ iii) Want to find $P(125 \leq x \leq 135)$ Apply the continuity correction: $P(125 \leq x \leq 135)$ = $P(124.5 \leq x \leq 135.5)$ iv) Find $P(124.5 \leq x \leq 135.5)$ Convert 124.5 to a z score z = $\frac{124.5-135}{\sqrt{13.5}}= -2.86$ Convert 135.5 to a z score z = $\frac{135.5-135}{\sqrt{13.5}}= 0.14$ Therefore, $P(124.5 \leq x \leq 135.5)= P(-2.86 < z < 0.14) = P(z < 0.14) - P(-2.86) = 0.5557 - 0.0021 = 0.5536$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.