Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 5 - Section 5.4 - Assess Your Understanding - Applying the Concepts - Page 295: 40a

Answer

$P(first~is~Roger~and~second~is~Rick)=\frac{1}{42,165,542}\approx0.00000002372$

Work Step by Step

- First resident: The sample space: 6494 people. So, $N(S_1)=6494$ Consider the event "first resident is Roger Cummings". $N(first~resident~is~Roger)=1$ Using the Classical Method (page 259): $P(first~resident~is~Roger)=\frac{N(first~resident~is~Roger)}{N(S_1)}=\frac{1}{6494}$ - Second resident: The sample space: 6493 remaining people. So, $N(S_2)=6493$ Consider the event "second resident is Rick Whittingham". $N(second~resident~is~Rick~|~first~resident~is~Roger)=1$ Using the Classical Method (page 259): $P(second~resident~is~Rick~|~first~resident~is~Roger)=\frac{N(second~resident~is~Rick~|~first~resident~is~Roger)}{N(S_2)}=\frac{1}{6493}$ Now, using the General Multiplication Rule (page 289): $P(first~is~Roger~and~second~is~Rick)=P(first~resident~is~Roger)\times P(second~resident~is~Rick~|~first~resident~is~Roger)=\frac{1}{6494}\times\frac{1}{6493}=\frac{1}{42,165,542}\approx0.00000002372$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.