Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 5 - Section 5.4 - Assess Your Understanding - Applying the Concepts - Page 295: 38

Answer

$P(A~royal~flush)=\frac{1}{649740}\approx0.000001539$

Work Step by Step

First, let's find $P(royal~flush~of~clubs)$ - First card: The sample space are the 52 cards. So, $N(S_1)=52$ Let $E_1$ be the next event: "get one of the five following cards": Ten of clubs, Jack of clubs, Queen of clubs, King of clubs or Ace of clubs. $N(E_1)=5$ Using the Classical Method (page 259): $P(E_1)=\frac{N(E_1)}{N(S_1)}=\frac{5}{52}$ - Second card: The sample space are the 51 remaining cards. So, $N(S_2)=51$ Let $E_2$ be the next event: "get one of the four remaining of the five initial cards": $N(E_2~|~E_1)=4$ Using the Classical Method (page 259): $P(E_2~|~E_1)=\frac{N(E_2~|~E_1)}{N(S_2)}=\frac{4}{51}$ - Third card: The sample space are the 50 remaining cards. So, $N(S_3)=50$ Let $E_3$ be the next event: "get one of the three remaining of the five initial cards": $N(E_3~|~E_1~and~E_2)=3$ Using the Classical Method (page 259): $P(E_3~|~E_1~and~E_2)=\frac{N(E_3~|~E_1~and~E_2)}{N(S_3)}=\frac{3}{50}$ - Fourth card: The sample space are the 49 remaining cards. So, $N(S_4)=49$ Let $E_4$ be the next event: "get one of the two remaining of the five initial cards": $N(E_4~|~E_1~and~E_2~and~E_3)=2$ Using the Classical Method (page 259): $P(E_4~|~E_1~and~E_2~and~E_3)=\frac{N(E_3~|~E_1~and~E_2~and~E_3)}{N(S_4)}=\frac{2}{49}$ - Fifth card: The sample space are the 48 remaining cards. So, $N(S_5)=48$ Let $E_5$ be the next event: "get the last of the five initial cards": $N(E_5~|~E_1~and~E_2~and~E_3~and~E_4)=1$ Using the Classical Method (page 259): $P(E_5~|~E_1~and~E_2~and~E_3~and~E_4)=\frac{N(E_5~|~E_1~and~E_2~and~E_3~and~E_4)}{N(S_5)}=\frac{1}{48}$ Now, using the General Multiplication Rule (page 289): $P(royal~flush~of~clubs)=P(E_1)\times P(E_2~|~E_1)\times P(E_3~|~E_1~and~E_2)\times P(E_4~|~E_1~and~E_2~and~E_3)\times P(E_5~|~E_1~and~E_2~and~E_3~and~E_4)=\frac{5}{52}\times\frac{4}{51}\times\frac{3}{50}\times\frac{2}{49}\times\frac{1}{48}=\frac{120}{311875200}=\frac{1}{2598960}\approx0.0000003848$ The events "royal flush of clubs", "royal flush of diamonds", "royal flush of hearts" and "royal flush of spades" are mutually exclusive (disjoint events). Also: $P(royal~flush~of~clubs)=P(royal~flush~of~diamonds)=P(royal~flush~of~hearts)=P(royal~flush~of~spades)=\frac{1}{2598960}$ Now, using the Addition Rule for Disjoint Events (page 270): $P(A~royal~flush)=P(royal~flush~of~clubs)+P(royal~flush~of~diamonds)+P(royal~flush~of~hearts)+P(royal~flush~of~spades)=\frac{1}{2598960}+\frac{1}{2598960}+\frac{1}{2598960}+\frac{1}{2598960}=\frac{4}{2598960}=\frac{1}{649740}\approx0.000001539$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.