Answer
The variance:
$σ^2=196$
The standard deviation:
$σ=\sqrt {196}=14$
Work Step by Step
At first, let's evaluate the sample mean:
$x̅=\frac{6+52+13+49+35+25+31+29+31+29}{10}=30$
Now, the variance:
$s^2=\frac{Σ(x_i-x̅)^2}{n-1}=\frac{(6-30)^2+(52-30)^2+(13-30)^2+(49-30)^2+(35-30)^2+(25-30)^2+(31-30)^2+(29-30)^2+(31-30)^2+(29-30)^2}{9}=\frac{576+484+289+361+25+25+1+1+1+1}{9}=196$
The standard deviation:
$s=\sqrt {196}=14$