Answer
The range:
$R=1537~dollars$
The variance:
$s^2=507,013.58~dollars^2$
The standard deviation:
$s=712.05~dollars$
Work Step by Step
The costs in ascending order: 1073, 1889, 2529, 2610
$R=largest~data~value-smallest~data~value=2610-1073=1537$
The mean:
$x̅=\frac{1073+1889+2529+2610}{4}=2025.25$
The variance:
$s^2=\frac{Σ(x_i-x̅)^2}{n-1}=\frac{(1073-2025.25)^2+(1889-2025.25)^2+(2529-2025.25)^2+(2610-2025.25)^2}{4-1}=507,013.58$
The standard deviation:
$s=712.05$