Answer
$R=13.92~dollars$
The variance:
$s^2=22.58~dollars^2$
The standard deviation:
$s=4.75~dollars$
Work Step by Step
The costs in ascending order: 35.34, 38.93, 39.43, 42.09, 43.39, 49.26
$R=largest~data~value-smallest~data~value=49.26-35.34=13.92$
The mean:
$x̅=\frac{35.34+38.93+39.43+42.09+43.39+49.26}{6}=41.41$
The variance:
$s^2=\frac{Σ(x_i-x̅)^2}{n-1}=\frac{(35.34-41.41)^2+(38.93-41.41)^2+(39.43-41.41)^2+(42.09-41.41)^2+(43.39-41.41)^2+(49.26-41.41)^2}{6-1}=22.58$
The standard deviation:
$s=\sqrt {22.58}=4.75$