Answer
Blue has a larger standard deviation.
Work Step by Step
$s=\sqrt {\frac{Σ(x_i-x̅)^2}{n-1}}$
Blue:
First, the mean:
$x̅_{Blue}=\frac{0.582+0.481+0.841+0.267+0.685+0.450}{6}=0.551$
Now, the standard deviation:
$s_{Blue}=\sqrt {\frac{(0.582-0.551)^2+(0.481-0.551)^2+(0.841-0.551)^2+(0.267-0.551)^2+(0.685-0.551)^2+(0.450-0.551)^2}{6-1}}=0.199$
Bottled:
First, the mean:
$x̅_{Red}=\frac{0.408+0.407+0.542+0.402+0.456+0.533}{6}=0.458$
Now, the standard deviation:
$s_{Red}=\sqrt {\frac{(0.408-0.458)^2+(0.407-0.458)^2+(0.542-0.458)^2+(0.402-0.458)^2+(0.456-0.458)^2+(0.533-0.458)^2}{12-1}}=0.0647$
$s_{Blue}\gt s_{Red}$