Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 3 - Section 3.2 - Assess Your Understanding - Applying the Concepts - Page 152: 17b

Answer

Tap water pH has more dispersion.

Work Step by Step

$s=\sqrt {\frac{Σ(x_i-x̅)^2}{n-1}}$ Tap: First, the mean: $x̅_{Tap}=\frac{7.64+7.45+7.47+7.50+7.68+7.69+7.45+7.10+7.56+7.47+7.52+7.47}{12}=7.50$ Now, the standard deviation: $s_{Tap}=\sqrt {\frac{(7.64-7.50)^2+(7.45-7.50)^2+(7.47-7.50)^2+(7.50-7.50)^2+(7.68-7.50)^2+(7.69-7.50)^2+(7.45-7.50)^2+(7.10-7.50)^2+(7.56-7.50)^2+(7.47-7.50)^2+(7.52-7.50)^2+(7.47-7.50)^2}{12-1}}=0.154$ Bottled: First, the mean: $x̅_{Bottled}=\frac{5.15+5.09+5.26+5.20+5.02+5.23+5.28+5.26+5.13+5.26+5.21+5.24}{12}=5.194$ Now, the standard deviation: $s_{Bottled}=\sqrt {\frac{(5.15-5.194)^2+(5.09-5.194)^2+(5.26-5.194)^2+(5.20-5.194)^2+(5.02-5.194)^2+(5.23-5.194)^2+(5.28-5.194)^2+(5.26-5.194)^2+(5.13-5.194)^2+(5.26-5.194)^2+(5.21-5.194)^2+(5.24-5.194)^2}{12-1}}=0.0805$ $s_{Tap}\gt s_{Bottled}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.