Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 14 - Section 14.2 - Assess Your Understanding - Vocabulary and Skill Building - Page 697: 4b

Answer

Confidence interval: $3.998\lt ŷ\lt6.102$ We are 95% confident that the mean value of $y$ when $x=7$ is between 3.998 and 6.102.

Work Step by Step

From problem 6 from Section 14.1: $s_e=0.7303$ $∑(x_i-x ̅)^2=(\sqrt {5-1}\times3.162)^2=39.993$ $x ̅=7$ (Problem 7d, section 4.2) $n=5$, so: $d.f.=n-2=3$ $level~of~confidence=(1-α).100$% $95$% $=(1-α).100$% $0.95=1-α$ $α=0.05$ $t_{\frac{α}{2}}=t_{0.025}=3.182$ (According to Table VI, for d.f. = 3 and area in right tail = 0.025) $Lower~bound=ŷ -t_{\frac{α}{2}}.s_e\sqrt {\frac{1}{n}+\frac{(x^*-x ̅)^2}{∑(x_i-x ̅)^2}}=5.1-3.182\times0.7303\sqrt {\frac{1}{5}+\frac{(8-7)^2}{39.993}}=3.998$ $Upper~bound=ŷ +t_{\frac{α}{2}}.s_e\sqrt {1+\frac{1}{n}+\frac{(x^*-x ̅)^2}{∑(x_i-x ̅)^2}}=5.1+3.182\times0.7303\sqrt {\frac{1}{5}+\frac{(8-7)^2}{39.993}}=6.102$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.