Answer
P(2)=$0.264$,
P(X>2)=0.155
Work Step by Step
Use binomial distribution, p=0.14, n=10,
P(2)=$_{10}C_2\times 0.14^2\times0.86^8=0.264$
P(X>2)=1-P(X$\leq 2$)=1-P(0)-P(1)-P(2)
P(0)=$_{10}C_0\times 0.14^0\times0.86^{10}=0.221$
P(1)=$_{10}C_1\times 0.14\times0.86^9=0.360$
So P(X>2)=1-(0.221+0.360+0.264)=0.155