#### Answer

Variance:202.44
Standard deviation:14.23
Range:43.

#### Work Step by Step

By using the results from before: $\mu=(-14.25).$
Variance=$\frac{\sum (x-\mu)^2}{n}=\frac{((-15)-(-14.25))^2+((-18)-(-14.25))^2+...+(2-(-14.25))^2}{8}=202.44.$
Standard deviation=$\sqrt{variance}=\sqrt{202.44}=14.23$
Range=maximum value-minimum value=$11-(-32)=43$.