#### Answer

Variance:$195.8 \ (m\$)^2$.
Standard deviation:$13.99 \ m\$$
Range:$54 \ m\$$.

#### Work Step by Step

By using the results from before: $\mu=16.36 \ m\$.$
Variance=$\frac{\sum (x-\mu)^2}{n}=\frac{(58-16.36)^2+(22-16.36)^2+...+(4-16.36)^2}{14}=195.8 \ (m\$)^2.$
Standard deviation=$\sqrt{variance}=\sqrt{195.8 \ (m\$)^2}=13.99 \ m\$$
Range=maximum value-minimum value=$58 \ m\$-4 \ m\$=54 \ m\$$.