Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 8 - Section 8.4 - Plane Curves and Parametric Equations - 8.4 Exercises - Page 618: 51

Answer

Graph 2

Work Step by Step

When $t=0$ then $x=t+\sin 2t=0;y=t+\sin 3t=0$ so the graph passes from origin (0,0) And when $t\rightarrow \infty \Rightarrow x=\lim _{t\rightarrow \infty }\left( t+\sin 2t\right) =t\left( 1+\dfrac {\sin 2t}{t}\right) =\infty $ $t\rightarrow \infty \Rightarrow y=\lim _{t\rightarrow \infty }\left( t+\sin 3t\right) =t\left( 1+\dfrac {\sin 3t}{t}\right) =\infty $ $t\rightarrow -\infty \Rightarrow x=\lim _{t\rightarrow -\infty }\left( t+\sin 2t\right) =t\left( 1+\dfrac {\sin 2t}{t}\right) =-\infty $ $t\rightarrow -\infty \Rightarrow y=\lim _{t\rightarrow -\infty }\left( t+\sin 3t\right) =t\left( 1+\dfrac {\sin 3t}{t}\right) =-\infty $ So this is graph 2 (when $x\rightarrow \infty \Rightarrow y\rightarrow \infty ;x\rightarrow -\infty \Rightarrow y\rightarrow -\infty $ )
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.