Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.4 - Basic Trigonometric Equations - 7.4 Exercises - Page 569: 20

Answer

$\theta=\frac{4\pi}{3}+2k\pi$ and $\theta=\frac{5\pi}{3}+2k\pi$ Six example solutions for $k=0,\pm1$: $-\frac{2\pi}{3}, -\frac{\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}, \frac{10\pi}{3}, \frac{11\pi}{3}, $

Work Step by Step

Given $sin\theta=-\frac{\sqrt 3}{2}$, we can find two $\theta$ values in $[0,2\pi],$ $\theta=\frac{4\pi}{3}, \frac{5\pi}{3},$ and the general solutions are $\theta=\frac{4\pi}{3}+2k\pi$ and $\theta=\frac{5\pi}{3}+2k\pi$ where $k$ is any integer. Six example solutions for $k=0,\pm1$: $-\frac{2\pi}{3}, -\frac{\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}, \frac{10\pi}{3}, \frac{11\pi}{3}, $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.