Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 6 - Review - Test - Page 531: 7

Answer

$\dfrac{4-3\sqrt 2}{4}$

Work Step by Step

Apply the trigonometric identities: $\sin^2 \theta+\cos^2 \theta=1 \implies \sin \theta=-\sqrt{1-\cos^2\theta}$ $\sin \theta=-\sqrt{1-({\dfrac{1}{3})^2}}=-\sqrt{1-{\dfrac{1}{9}}}=-\dfrac{2\sqrt 2}{3}$ Now, $\tan \theta\cot \theta+\csc \theta=(\dfrac{1}{\cot \theta})\times \cot \theta+(\dfrac{1}{\sin\theta})$ This gives: $\tan \theta\cot \theta+\csc \theta=(\dfrac{1}{\cot \theta})\times \cot \theta+(-\dfrac{1}{\sin\theta})=1-\dfrac{3\sqrt 2}{4}$ or, $\tan \theta\cot \theta+\csc \theta=(\dfrac{1}{\cot \theta})\times \cot \theta+(-\dfrac{1}{\sin\theta})=\dfrac{4-3\sqrt 2}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.