Answer
1. Graph $P1=x^3$
2. Shift left 2 units to get $P2=(x+2)^3$
3. Reflect around x-axis to get $P3=-(x+2)^3$
4. Shift up 27 units to get $P(x)=-(x+2)^3+27$
Work Step by Step
We have $P(x)=-(x+2)^3+27$
1. Graph $P1=x^3$
2. Shift left 2 units to get $P2=(x+2)^3$
3. Reflect around x-axis to get $P3=-(x+2)^3$
4. Shift up 27 units to get $P(x)=-(x+2)^3+27$