Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 9 - Systems and Matrices - Chapter 9 Test Prep - 955 - Page 955: 61

Answer

$$\left\{ {\left( {\sqrt 3 ,2i} \right),\left( { - \sqrt 3 ,2i} \right),\left( {\sqrt 3 , - 2i} \right),\left( { - \sqrt 3 , - 2i} \right)} \right\}$$

Work Step by Step

$$\eqalign{ & 2{x^2} - 3{y^2} = 18\,\,\,\left( {\bf{1}} \right) \cr & 2{x^2} - 2{y^2} = 14\,\,\,\left( {\bf{2}} \right) \cr & \cr & {\text{Multiply the equation }}\left( {\bf{1}} \right){\text{ by }} - 1{\text{ and add both equations to}} \cr & {\text{eliminate }}{x^2} \cr & - 2{x^2} + 3{y^2} = - 18 \cr & \,\,\,\underline {2{x^2} - 2{y^2} = 14} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{y^2} = - 4 \cr & {\text{Solve the quadratic equation }}{y^2} = - 4 \cr & {y^2} = - 4 \cr & {y_1} = 2i,\,\,\,{x_2} = - 2i \cr & \cr & {\text{From the equation }}\left( {\bf{2}} \right){\text{ we have that}} \cr & 2{x^2} - 2{y^2} = 14 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{x^2} = \frac{{14 + 2{y^2}}}{2} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{x^2} = 7 + {y^2} \cr & \cr & {\text{Substitute }}{y_1} = 2i{\text{ into the equation }}{x^2} = 7 + {y^2} \cr & {x^2} = 7 + {\left( {2i} \right)^2} \cr & {x^2} = 3 \cr & x = \pm \sqrt 3 \cr & {\text{The first and second solutions are }}\left( {\sqrt 3 ,2i} \right){\text{ and }}\left( { - \sqrt 3 ,2i} \right) \cr & \cr & {\text{Substitute }}{y_2} = - 2i{\text{ into the equation }}{x^2} = 7 + {y^2} \cr & {x^2} = 7 + {\left( {2i} \right)^2} \cr & {x^2} = 3 \cr & x = \pm \sqrt 3 \cr & {\text{The first and second solutions are }}\left( {\sqrt 3 , - 2i} \right){\text{ and }}\left( { - \sqrt 3 , - 2i} \right) \cr & \cr & {\text{Therefore, the solution set of the system is}} \cr & \left\{ {\left( {\sqrt 3 ,2i} \right),\left( { - \sqrt 3 ,2i} \right),\left( {\sqrt 3 , - 2i} \right),\left( { - \sqrt 3 , - 2i} \right)} \right\} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.