Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 9 - Systems and Matrices - Chapter 9 Test Prep - 955 - Page 955: 59

Answer

$$\left\{ {\left( { - 2,0} \right),\left( {1,1} \right)} \right\}$$

Work Step by Step

$$\eqalign{ & {x^2} + 2xy + {y^2} = 4\,\,\,\left( {\bf{1}} \right) \cr & x - 3y = - 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\bf{2}} \right) \cr & {\text{Solve the equation }}\left( {\bf{2}} \right){\text{ for }}y \cr & y = \frac{{x + 2}}{3} \cr & {\text{Substitute }}\frac{{x + 2}}{3}{\text{ for }}y{\text{ into the equation }}\left( {\bf{1}} \right) \cr & {x^2} + 2x\left( {\frac{{x + 2}}{3}} \right) + {\left( {\frac{{x + 2}}{3}} \right)^2} = 4 \cr & {x^2} + \frac{2}{3}{x^2} + \frac{4}{3}x + \frac{{{x^2}}}{9} + \frac{{4x}}{9} + \frac{4}{9} = 4 \cr & \frac{{16}}{9}{x^2} + \frac{{16}}{9}x + \frac{4}{9} = 4 \cr & {\text{Solve for }}x \cr & 16{x^2} + 16x + 4 = 36 \cr & 4{x^2} + 4x + 1 = 9 \cr & 4{x^2} + 4x - 8 = 0 \cr & {x^2} + x - 2 = 0 \cr & \left( {x + 2} \right)\left( {x - 1} \right) = 0 \cr & {x_1} = - 2,\,\,\,\,{x_2} = 1 \cr & \cr & {\text{Substitute }}{x_1} = - 2{\text{ into the equation }}y = \frac{{x + 2}}{3}{\text{ to find }}\left( {{x_1},{y_1}} \right) \cr & y = \frac{{ - 2 + 2}}{3} \cr & y = 0 \cr & {\text{The first solution is }}\left( { - 2,0} \right) \cr & \cr & {\text{Substitute }}{x_2} = 1{\text{ into the equation }}y = \frac{{x + 2}}{3}{\text{ to find }}\left( {{x_2},{y_2}} \right) \cr & y = \frac{{1 + 2}}{3} \cr & y = 1 \cr & {\text{The second solution is }}\left( {1,1} \right) \cr & \cr & {\text{Therefore, the solution set of the system is}} \cr & \left\{ {\left( { - 2,0} \right),\left( {1,1} \right)} \right\} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.