Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 9 - Systems and Matrices - Chapter 9 Test Prep - 955 - Page 955: 57

Answer

$$\left\{ {\left( {4, - \frac{5}{2}} \right),\left( {5, - 2} \right)} \right\}$$

Work Step by Step

$$\eqalign{ & xy = - 10\,\,\,\,\,\,\,\,\left( {\bf{1}} \right) \cr & x + 2y = 1\,\,\,\,\,\,\left( {\bf{2}} \right) \cr & \cr & {\text{Solve the equation }}\left( {\bf{1}} \right){\text{ for }}y \cr & y = - \frac{{10}}{x} \cr & {\text{Substitute }} - \frac{{10}}{x}{\text{ for }}y{\text{ into the equation }}\left( {\bf{2}} \right) \cr & x + 2\left( { - \frac{{10}}{x}} \right) = 1\, \cr & x - \frac{{20}}{x} = 1\, \cr & {x^2} - 20 = x\, \cr & {x^2} - x - 20 = 0\, \cr & {\text{Solve for }}x \cr & \left( {x - 5} \right)\left( {x - 4} \right) = 0 \cr & {x_1} = 4,\,\,\,\,{x_2} = 5 \cr & \cr & {\text{Substitute }}{x_1} = 4{\text{ into the equation }}y = - \frac{{10}}{x}{\text{ to find }}\left( {{x_1},{y_1}} \right) \cr & y = - \frac{{10}}{4} \cr & y = - \frac{5}{2} \cr & {\text{The first solution is }}\left( {4, - \frac{5}{2}} \right) \cr & \cr & {\text{Substitute }}{x_2} = 5{\text{ into the equation }}y = - \frac{{10}}{x}{\text{ to find }}\left( {{x_2},{y_2}} \right) \cr & y = - \frac{{10}}{5} \cr & y = - 2 \cr & {\text{The second solution is }}\left( {5, - 2} \right) \cr & \cr & {\text{Therefore, the solution set of the system is}} \cr & \left\{ {\left( {4, - \frac{5}{2}} \right),\left( {5, - 2} \right)} \right\} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.