#### Answer

$\color{blue}{A\approx 114.0 \space cm^2}$

#### Work Step by Step

RECALL:
The area of a sector $(A)$ intercepted by a central angle $\theta$ on a circle whose radius is $r$ is given by the formula:
$A = \frac{1}{2}r^2\theta$, where $\theta$ is in radian measure.
Convert the angle to radians to obtain:
$81^o
\\=81^o\cdot \dfrac{\pi}{180^o}
\\=\dfrac{9\pi}{20}$
Substitute the given values of the radius and $\theta$ to obtain:
$A=\frac{1}{2}r^2\theta
\\A=\frac{1}{2}(12.7^2)(\frac{9\pi}{20})
\\A=114.0091828
\\\color{blue}{A\approx 114.0 \space cm^2}$