Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 10 - Analytic Geometry - Chapter 10 Test Prep - Review Exercises - Page 1002: 55

Answer

$$\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{16}} = 1$$

Work Step by Step

$$\eqalign{ & {\text{hyperbola with }}x{\text{ - intercepts }}\left( { \pm 3,0} \right){\text{ and foci at }}\left( { \pm 5,0} \right){\text{ }} \cr & {\text{The coordinates of the foci are }}\left( { \pm c,0} \right),{\text{ then}} \cr & {\text{The equation of the ellipse is of the form }}\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1 \cr & \cr & {\text{foci are }}\left( { \pm c,0} \right),\left( { \pm 5,0} \right){\text{ }} \to c = 5 \cr & x{\text{ - intercepts }}\left( { \pm 3,0} \right) \to {\text{vertices}}\left( { \pm a,0} \right),\left( { \pm 3,0} \right) \to a = 3 \cr & {b^2} = {c^2} - {a^2} \cr & {b^2} = 25 - 9 \cr & {b^2} = 16 \cr & \cr & {\text{The equation of the hyperbola is}} \cr & \frac{{{x^2}}}{9} - \frac{{{y^2}}}{{16}} = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.