Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 10 - Analytic Geometry - Chapter 10 Test Prep - Review Exercises - Page 1002: 50

Answer

$$\frac{{5{y^2}}}{{16}} - \frac{{{x^2}}}{4} = 1$$

Work Step by Step

$$\eqalign{ & {\text{hyperbola; }}y{\text{ - intercept }}\left( {0, - 2} \right),{\text{ passing through the point }}\left( {2,3} \right) \cr & {\text{The parabola intercept the }}y{\text{ - axis then the standard equation is}} \cr & \frac{{{y^2}}}{{{a^2}}} - \frac{{{x^2}}}{{{b^2}}} = 1 \cr & {\text{The }}y{\text{ - intercepts are at }}\left( {0, \pm a} \right){\text{, }}\,\,\left( {0, - 2} \right)\, \to a = 2 \cr & {\text{Passing through the point }}\left( {2,3} \right).{\text{ so,}} \cr & \frac{{{{\left( 3 \right)}^2}}}{{{{\left( 2 \right)}^2}}} - \frac{{{{\left( 2 \right)}^2}}}{{{b^2}}} = 1 \cr & {\text{Solve for }}b \cr & \frac{9}{4} - \frac{4}{{{b^2}}} = 1 \cr & \frac{4}{{{b^2}}} = \frac{5}{4} \cr & {b^2} = \frac{{16}}{5} \cr & \cr & {\text{The equation of the hyperbola is}} \cr & \frac{{5{y^2}}}{{16}} - \frac{{{x^2}}}{4} = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.