Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 10 - Analytic Geometry - Chapter 10 Test Prep - Review Exercises - Page 1002: 44

Answer

$$\eqalign{ & {\text{The domain of the function is }}[0,1] \cr & {\text{The range of the function is }}\left[ { - 6,6} \right] \cr & {\text{The equation is not a function}} \cr} $$

Work Step by Step

$$\eqalign{ & x = - \sqrt {1 - \frac{{{y^2}}}{{36}}} \cr & {\text{Square each side}} \cr & {\left( x \right)^2} = {\left( { - \sqrt {1 - \frac{{{y^2}}}{{36}}} } \right)^2} \cr & {x^2} = 1 - \frac{{{y^2}}}{{36}} \cr & {\text{Write in standard form}}. \cr & {x^2} + \frac{{{y^2}}}{{36}} = 1 \cr & {\text{This is the equation of an ellipse }}\frac{{{x^2}}}{{{b^2}}} + \frac{{{y^2}}}{{{a^2}}} = 1 \cr & a = 6,\,\,\,\,b = 1 \cr & {\text{with }}x{\text{ - intercepts}}\left( {b,0} \right):\left( {1,0} \right) \cr & {\text{with }}y{\text{ - intercepts}}\left( {0, \pm a} \right):\left( {0, \pm 6} \right) \cr & {\text{In the original equation}},{\text{ the radical expression}}\,\,\, - \sqrt {1 - \frac{{{y^2}}}{{36}}} \cr & {\text{represents a nonnegative number, number}},{\text{ so the only }} \cr & {\text{possible values of }}x{\text{ are negative}} \cr & {\text{The domain of the function is }}[0,1] \cr & {\text{The range of the function is }}\left[ { - 6,6} \right] \cr & {\text{The equation is not a function}} \cr & \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.