Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 10 - Analytic Geometry - 10.2 Ellipses - 10.2 Exercises - Page 979: 30

Answer

$$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{12}} = 1$$

Work Step by Step

$$\eqalign{ & e = \frac{1}{2};\,\,\,{\text{vertices at }}\left( { - 4,0} \right),\,\,\left( {4,0} \right) \cr & {\text{The }}y{\text{ coordinate is the same, then the ellipse has the equation}} \cr & \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\,\,\,\,\,\,\left( {{\text{where }}a > b} \right){\text{ and vertices }}\left( { \pm a,0} \right) \cr & {\text{,then}} \cr & a = 4 \cr & e = \frac{c}{a} = \frac{1}{2} \cr & c = ea = \frac{1}{2}\left( 4 \right) = 2 \cr & {b^2} = {a^2} - {c^2} \cr & {b^2} = {4^2} - {2^2} \cr & {b^2} = 12 \cr & \cr & \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1 \cr & {\text{Substituting }}a{\text{ and }}b \cr & \frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{12}} = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.