Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 10 - Analytic Geometry - 10.2 Ellipses - 10.2 Exercises - Page 979: 28

Answer

$$\frac{{{{\left( {x - 2} \right)}^2}}}{{41}} + \frac{{{{\left( {y + 3} \right)}^2}}}{{16}} = 1$$

Work Step by Step

$$\eqalign{ & {\text{foci at }}\left( { - 3, - 3} \right){\text{ and }}\left( {7, - 3} \right) \cr & {\text{The }}y{\text{ coordinate is the same, then the ellipse has the equation}} \cr & \frac{{{{\left( {x - h} \right)}^2}}}{{{a^2}}} + \frac{{{{\left( {y - k} \right)}^2}}}{{{b^2}}} = 1 \cr & {\text{With foci }}\left( {h \pm c,k} \right),\,\,\,k = - 3 \cr & h + c = 7{\text{ and }}h - c = - 3 \cr & {\text{Solving we obtain}} \cr & h = 2,\,\,\,\,c = 5 \cr & \cr & {\text{We know the point }}\left( {2, - 7} \right){\text{ lies on the ellipse, then}} \cr & \frac{{{{\left( {x - h} \right)}^2}}}{{{a^2}}} + \frac{{{{\left( {y - k} \right)}^2}}}{{{b^2}}} = 1 \cr & \frac{{{{\left( {2 - 2} \right)}^2}}}{{{a^2}}} + \frac{{{{\left( { - 7 + 3} \right)}^2}}}{{{b^2}}} = 1 \cr & \frac{{16}}{{{b^2}}} = 1\,\,\, \cr & {b^2} = 16 \cr & \cr & {a^2} = {b^2} + {c^2} \cr & {a^2} = 16 + {\left( 5 \right)^2} \cr & {a^2} = 41 \cr & \cr & {\text{The equation of the ellipse is}} \cr & \frac{{{{\left( {x - 2} \right)}^2}}}{{41}} + \frac{{{{\left( {y + 3} \right)}^2}}}{{16}} = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.