Answer
$$\eqalign{
& {\text{domain: }}\left[ { - 2,4} \right] \cr
& {\text{range: }}\left[ { - 8,2} \right] \cr
& {\text{center: }}\left( {1, - 3} \right) \cr
& {\text{Vertices: }}\left( {1, - 8} \right){\text{ and }}\left( {1,2} \right) \cr
& {\text{Endpoints of the minor axis: }}\left( { - 2, - 3} \right){\text{ and }}\left( {4, - 3} \right) \cr
& {\text{Foci: }}\left( {1, - 7} \right){\text{ and }}\left( {1,1} \right) \cr} $$
Work Step by Step
$$\eqalign{
& \frac{{{{\left( {x - 1} \right)}^2}}}{9} + \frac{{{{\left( {y + 3} \right)}^2}}}{{25}} = 1 \cr
& {\text{The equation of the ellipse is in the form }} \cr
& \frac{{{{\left( {x - h} \right)}^2}}}{{{b^2}}} + \frac{{{{\left( {y - k} \right)}^2}}}{{{a^2}}} = 1\,\,\,\,\left( {a > b} \right) \cr
& {\text{Comparing we obtain}} \cr
& a = 5,\,\,b = 3 \cr
& h = \,1,\,\,k = - 3 \cr
& c = \sqrt {{5^2} - {3^2}} = 4 \cr
& \cr
& {\text{The ellipse with center at }}\left( {h,k} \right) = \left( {1, - 3} \right) \cr
& {\text{Vertices }}\left( {h,k \pm a} \right) \cr
& {\text{Vertices: }}\left( {1, - 8} \right){\text{ and }}\left( {1,2} \right) \cr
& \cr
& {\text{Foci }}\left( {h,k \pm c} \right) \cr
& {\text{Foci: }}\left( {1, - 7} \right){\text{ and }}\left( {1,1} \right) \cr
& \cr
& {\text{The domain of the ellipse is }}\left[ {h - b,h + b} \right] \cr
& {\text{domain }}\left[ { - 2,4} \right] \cr
& \cr
& {\text{The range of the ellipse is }}\left[ {k - a,k + a} \right] \cr
& {\text{range }}\left[ { - 8,2} \right] \cr
& \cr
& {\text{Endpoints of the minor axis: }}\left( {h \pm b,k} \right) \cr
& {\text{Endpoints of the minor axis: }}\left( { - 2, - 3} \right){\text{ and }}\left( {4, - 3} \right) \cr
& \cr
& {\text{Therefore,}} \cr
& {\text{domain: }}\left[ { - 2,4} \right] \cr
& {\text{range: }}\left[ { - 8,2} \right] \cr
& {\text{center: }}\left( {1, - 3} \right) \cr
& {\text{Vertices: }}\left( {1, - 8} \right){\text{ and }}\left( {1,2} \right) \cr
& {\text{Endpoints of the minor axis: }}\left( { - 2, - 3} \right){\text{ and }}\left( {4, - 3} \right) \cr
& {\text{Foci: }}\left( {1, - 7} \right){\text{ and }}\left( {1,1} \right) \cr} $$