Answer
$$\eqalign{
& {\text{domain: }}\left[ { - 3,7} \right] \cr
& {\text{range: }}\left[ { - 1,3} \right] \cr
& {\text{center: }}\left( {2,1} \right) \cr
& {\text{Vertices: }}\left( {7,1} \right){\text{ and }}\left( { - 3,1} \right) \cr
& {\text{Endpoints of the minor axis: }}\left( {2, - 1} \right){\text{ and }}\left( {2,3} \right) \cr
& {\text{Foci }}\left( {2 + \sqrt {21} ,1} \right){\text{ and }}\left( {2 - \sqrt {21} ,1} \right) \cr} $$
Work Step by Step
$$\eqalign{
& \frac{{{{\left( {x - 2} \right)}^2}}}{{25}} + \frac{{{{\left( {y - 1} \right)}^2}}}{4} = 1 \cr
& {\text{The equation of the ellipse is in the form }} \cr
& \frac{{{{\left( {x - h} \right)}^2}}}{{{a^2}}} + \frac{{{{\left( {y - k} \right)}^2}}}{{{b^2}}} = 1\,\,\,\,\left( {a > b} \right) \cr
& a = 5,\,\,b = 2 \cr
& h = \,2,\,\,k = 1\, \cr
& c = \sqrt {{5^2} - {2^2}} = \sqrt {21} \cr
& \cr
& {\text{The ellipse with center at }}\left( {h,k} \right) = \left( {2,1} \right) \cr
& {\text{Vertices }}\left( {h \pm a,k} \right) \cr
& {\text{Vertices: }}\left( {7,1} \right){\text{ and }}\left( { - 3,1} \right) \cr
& \cr
& {\text{Foci }}\left( {h \pm c,k} \right) \cr
& {\text{Foci: }}\left( {2 + \sqrt {21} ,1} \right){\text{ and }}\left( {2 - \sqrt {21} ,1} \right) \cr
& \cr
& {\text{The domain of the ellipse is }}\left[ {h - a,h + a} \right] \cr
& {\text{domain }}\left[ { - 3,7} \right] \cr
& \cr
& {\text{The range of the ellipse is }}\left[ {k - b,k + b} \right] \cr
& {\text{range }}\left[ { - 1,3} \right] \cr
& \cr
& {\text{Endpoints of the minor axis: }}\left( {h,k\, \pm b} \right) \cr
& {\text{Endpoints of the minor axis: }}\left( {2, - 1} \right){\text{ and }}\left( {2,3} \right) \cr
& \cr
& {\text{Therefore,}} \cr
& {\text{domain: }}\left[ { - 3,7} \right] \cr
& {\text{range: }}\left[ { - 1,3} \right] \cr
& {\text{center: }}\left( {2,1} \right) \cr
& {\text{Vertices: }}\left( {7,1} \right){\text{ and }}\left( { - 3,1} \right) \cr
& {\text{Endpoints of the minor axis: }}\left( {2, - 1} \right){\text{ and }}\left( {2,3} \right) \cr
& {\text{Foci }}\left( {2 + \sqrt {21} ,1} \right){\text{ and }}\left( {2 - \sqrt {21} ,1} \right) \cr} $$