#### Answer

$v = + \sqrt {\frac{Fr}{Mk}}, - \sqrt {\frac{Fr}{Mk}}$

#### Work Step by Step

$F = \frac{kMv^2}{r}$
$\frac{Fr}{Mk} = v^2$
$v = + \sqrt {\frac{Fr}{Mk}}, - \sqrt {\frac{Fr}{Mk}}$

Published by
Pearson

ISBN 10:
013421742X

ISBN 13:
978-0-13421-742-0

$v = + \sqrt {\frac{Fr}{Mk}}, - \sqrt {\frac{Fr}{Mk}}$

$F = \frac{kMv^2}{r}$
$\frac{Fr}{Mk} = v^2$
$v = + \sqrt {\frac{Fr}{Mk}}, - \sqrt {\frac{Fr}{Mk}}$

You can help us out by revising, improving and updating this answer.

Update this answerAfter you claim an answer you’ll have **24 hours** to send in a draft. An editor
will review the submission and either publish your submission or provide feedback.