Answer
a) The required form is,
$\left[ \begin{array}{*{35}{r}}
3 & 5 \\
2 & -3 \\
\end{array} \right]\left[ \begin{matrix}
x \\
y \\
\end{matrix} \right]=\left[ \begin{array}{*{35}{r}}
9 \\
-13 \\
\end{array} \right]$
b) The inverse of matrix $A=\left[ \begin{array}{*{35}{r}}
3 & 5 \\
2 & -3 \\
\end{array} \right]$ is,
${{A}^{-1}}=\frac{1}{19}\left[ \begin{array}{*{35}{r}}
3 & 5 \\
2 & -3 \\
\end{array} \right]$
c) The solution is, $x=-2,y=3$
Work Step by Step
(a)
Consider the system of equations
$\begin{align}
& 3x+5y=9 \\
& 2x-3y=-13
\end{align}$
Therefore, in matrix form, the system of equations can be written as
$AX=B$
Where
$A=\left[ \begin{array}{*{35}{r}}
3 & 5 \\
2 & -3 \\
\end{array} \right];B=\left[ \begin{array}{*{35}{r}}
9 \\
-13 \\
\end{array} \right];X=\left[ \begin{matrix}
x \\
y \\
\end{matrix} \right]$
The representation of the system is $\left[ \begin{array}{*{35}{r}}
3 & 5 \\
2 & -3 \\
\end{array} \right]\left[ \begin{matrix}
x \\
y \\
\end{matrix} \right]=\left[ \begin{array}{*{35}{r}}
9 \\
-13 \\
\end{array} \right]$.
(b)
Consider the given matrix
$A=\left[ \begin{array}{*{35}{r}}
3 & 5 \\
2 & -3 \\
\end{array} \right]$
Consider the determinant of the matrix
$\begin{align}
& \left| A \right|=\left| \begin{array}{*{35}{r}}
3 & 5 \\
2 & -3 \\
\end{array} \right| \\
& =-9-10 \\
& =-19
\end{align}$
Consider the adjoint of the matrix
$\begin{align}
& \text{adj}\left( A \right)={{\left[ \begin{array}{*{35}{r}}
+\left( -3 \right) & -\left( 2 \right) \\
-\left( 5 \right) & +3 \\
\end{array} \right]}^{t}} \\
& ={{\left[ \begin{array}{*{35}{r}}
-3 & -2 \\
-5 & 3 \\
\end{array} \right]}^{t}} \\
& =\left[ \begin{array}{*{35}{r}}
-3 & -5 \\
-2 & 3 \\
\end{array} \right]
\end{align}$
Therefore, the inverse of the matrix is given by:
$\begin{align}
& {{A}^{-1}}=\frac{1}{\left| A \right|}\text{adj}\left( A \right) \\
& =-\frac{1}{19}\left[ \begin{array}{*{35}{r}}
-3 & -5 \\
-2 & 3 \\
\end{array} \right] \\
& =\frac{1}{19}\left[ \begin{array}{*{35}{r}}
3 & 5 \\
2 & -3 \\
\end{array} \right]
\end{align}$
The inverse matrix is
${{A}^{-1}}=\frac{1}{19}\left[ \begin{array}{*{35}{r}}
3 & 5 \\
2 & -3 \\
\end{array} \right]$.
(c)
Consider the given system of equations in matrix form
$AX=B$
Therefore, the solution of the equations is
$X={{A}^{-1}}B$
Consider
$\begin{align}
& X=\frac{1}{19}\left[ \begin{array}{*{35}{r}}
3 & 5 \\
2 & -3 \\
\end{array} \right]\left[ \begin{array}{*{35}{r}}
9 \\
-13 \\
\end{array} \right] \\
& =\frac{1}{19}\left[ \begin{array}{*{35}{r}}
27-65 \\
18+39 \\
\end{array} \right] \\
& =\frac{1}{19}\left[ \begin{array}{*{35}{r}}
-38 \\
57 \\
\end{array} \right] \\
& =\left[ \begin{array}{*{35}{r}}
-2 \\
3 \\
\end{array} \right]
\end{align}$
The solution of the system is $x=-2,y=3$.