Answer
The required matrix is,
$\left[ \begin{array}{*{35}{r}}
-1 & 2 \\
-5 & 4 \\
\end{array} \right]$
Work Step by Step
To solve the provided expression, follow the methods given below:
Matrix addition: consider two matrices $X,Y$
$X=\left[ \begin{matrix}
{{x}_{1}} & {{x}_{2}} \\
{{x}_{3}} & {{x}_{4}} \\
\end{matrix} \right]$ and $Y=\left[ \begin{matrix}
{{y}_{1}} & {{y}_{2}} \\
{{y}_{3}} & {{y}_{4}} \\
\end{matrix} \right]$
Now,
$\begin{align}
& X+Y=\left[ \begin{matrix}
{{x}_{1}} & {{x}_{2}} \\
{{x}_{3}} & {{x}_{4}} \\
\end{matrix} \right]+\left[ \begin{matrix}
{{y}_{1}} & {{y}_{2}} \\
{{y}_{3}} & {{y}_{4}} \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
{{x}_{1}}+{{y}_{1}} & {{x}_{2}}+{{y}_{2}} \\
{{x}_{3}}+{{y}_{3}} & {{x}_{4}}+{{y}_{4}} \\
\end{matrix} \right]
\end{align}$
Matrix multiplication with a scalar: Consider a matrix $Z$ and a scalar value a:
$Z=\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
{{z}_{3}} & {{z}_{4}} \\
\end{matrix} \right]$
Now,
$\begin{align}
& aZ=a\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
{{z}_{4}} & {{z}_{3}} \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
a{{z}_{1}} & a{{z}_{2}} \\
a{{z}_{4}} & a{{z}_{3}} \\
\end{matrix} \right]
\end{align}$
Using the method given above, solve the provided expression:
$\begin{align}
& BC-3B=\left[ \begin{array}{*{35}{r}}
1 & -1 \\
2 & 1 \\
\end{array} \right]\left[ \begin{array}{*{35}{r}}
1 & 2 \\
-1 & 3 \\
\end{array} \right]-3\left[ \begin{array}{*{35}{r}}
1 & -1 \\
2 & 1 \\
\end{array} \right] \\
& =\left[ \begin{array}{*{35}{r}}
1+1 & 2-3 \\
2-1 & 4+3 \\
\end{array} \right]-\left[ \begin{array}{*{35}{r}}
3 & -3 \\
6 & 3 \\
\end{array} \right] \\
& =\left[ \begin{array}{*{35}{r}}
2 & -1 \\
1 & 7 \\
\end{array} \right]-\left[ \begin{array}{*{35}{r}}
3 & -3 \\
6 & 3 \\
\end{array} \right] \\
& =\left[ \begin{array}{*{35}{r}}
-1 & 2 \\
-5 & 4 \\
\end{array} \right]
\end{align}$
The matrix is, $BC-3B=\left[ \begin{array}{*{35}{r}}
-1 & 2 \\
-5 & 4 \\
\end{array} \right]$.