Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.5 - Determinants and Cramer's Rule - Exercise Set - Page 945: 30

Answer

$\left( -2,3,4 \right)$

Work Step by Step

According to Cramer’s rule $x=\frac{{{D}_{x}}}{D}$, $y=\frac{{{D}_{y}}}{D}$, $z=\frac{{{D}_{z}}}{D}$. $D$ is the determinant and all three denominators consist of x, y and z co-efficients. $D=\left| \begin{matrix} 1 & -1 & 2 \\ 2 & 3 & 1 \\ -1 & -1 & 3 \\ \end{matrix} \right|$ ${{D}_{x}}$, is the determinant in the numerator for x obtained by replacing the x- co-efficient in D with the constants on the right sides of the equations. ${{D}_{x}}=\left| \begin{matrix} 3 & -1 & 2 \\ 9 & 3 & 1 \\ 11 & -1 & 3 \\ \end{matrix} \right|$ ${{D}_{y}}$, is the determinant in the numerator for y obtained by replacing the y- co-efficient in D with the constants on the right sides of the equations. ${{D}_{y}}=\left| \begin{matrix} 1 & 3 & 2 \\ 2 & 9 & 1 \\ -1 & 11 & 3 \\ \end{matrix} \right|$ ${{D}_{z}}$, is the determinant in the numerator for z obtained by replacing the z- co-efficient in D with the constants on the right sides of the equations. ${{D}_{z}}=$ $\left| \begin{matrix} 1 & -1 & 3 \\ 2 & 3 & 9 \\ -1 & -1 & 11 \\ \end{matrix} \right|$. Calculate the four determinants. $\begin{align} & D=\left| \begin{matrix} 1 & -1 & 2 \\ 2 & 3 & 1 \\ -1 & -1 & 3 \\ \end{matrix} \right| \\ & =1\left( 9-\left( -1 \right) \right)+1\left( 6-\left( -1 \right) \right)+2\left( -2-\left( -3 \right) \right) \\ & =19 \end{align}$ $\begin{align} & {{D}_{x}}=\left| \begin{matrix} 3 & -1 & 2 \\ 9 & 3 & 1 \\ 11 & -1 & 3 \\ \end{matrix} \right| \\ & =3\left( 9+1 \right)+1\left( 27-11 \right)+2\left( -9-33 \right) \\ & =-38 \end{align}$ $\begin{align} & {{D}_{y}}=\left| \begin{matrix} 1 & 3 & 2 \\ 2 & 9 & 1 \\ -1 & 11 & 3 \\ \end{matrix} \right| \\ & =1\left( 27-11 \right)-3\left( 6+1 \right)+2\left( 22+9 \right) \\ & =57 \end{align}$ $\begin{align} & {{D}_{z}}=\left| \begin{matrix} 1 & -1 & 3 \\ 2 & 3 & 9 \\ -1 & -1 & 11 \\ \end{matrix} \right| \\ & =1\left( 33+9 \right)+1\left( 22+9 \right)+3\left( -2+3 \right) \\ & =76 \end{align}$ Substitute the given values $\begin{align} & x=\frac{{{D}_{x}}}{D} \\ & =\frac{-38}{19} \\ & =-2 \end{align}$ $\begin{align} & y=\frac{{{D}_{y}}}{D} \\ & =\frac{57}{19} \\ & =3 \end{align}$ $\begin{align} & z=\frac{{{D}_{z}}}{D} \\ & =\frac{76}{19} \\ & =4 \end{align}$ Therefore, $\left( x,y,z \right)=\left( -2,3,4 \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.