Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.1 - Matrix Solutions to Linear Systems - Exercise Set - Page 893: 41

Answer

The cubic function is $f\left( x \right)={{x}^{3}}-2{{x}^{2}}+3$.

Work Step by Step

To obtain the cubic function, at first we will find the coefficients a, b, c and d. Since, $f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d$ So, $f\left( -1 \right)=0$ gives, $\begin{align} & f\left( -1 \right)=a{{\left( -1 \right)}^{3}}+b{{\left( -1 \right)}^{2}}+c\left( -1 \right)+d \\ & 0=-a+b-c+d \\ & -a+b-c+d=0 \end{align}$ (I) $f\left( 1 \right)=2$ gives, $\begin{align} & f\left( 1 \right)=a{{\left( 1 \right)}^{3}}+b{{\left( 1 \right)}^{2}}+c\left( 1 \right)+d \\ & 2=a+b+c+d \\ & a+b+c+d=2 \end{align}$ (II) $f\left( 2 \right)=3$ gives, $\begin{align} & f\left( 2 \right)=a{{\left( 2 \right)}^{3}}+b{{\left( 2 \right)}^{2}}+c\left( 2 \right)+d \\ & 3=8a+4b+2c+d \\ & 8a+4b+2c+d=3 \end{align}$ (III) $f\left( 3 \right)=12$ gives, $\begin{align} & f\left( 3 \right)=a{{\left( 3 \right)}^{3}}+b{{\left( 3 \right)}^{2}}+c\left( 3 \right)+d \\ & 12=27a+9b+3c+d \\ & 27a+9b+3c+d=12 \end{align}$ (IV) Equations (I), (II), (III) and (IV) give, $\begin{align} & -a+b-c+d=0 \\ & a+b+c+d=2 \\ & 8a+4b+2c+d=3 \\ & 27a+9b+3c+d=12 \end{align}$ Use the Gauss elimination method to obtain the solution of the above system of equations. The matrix corresponding to the system of equations is as follows: $\left[ \begin{matrix} -1 & 1 & -1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 2 \\ 8 & 4 & 2 & 1 & 3 \\ 27 & 9 & 3 & 1 & 12 \\ \end{matrix} \right]$ Use the elementary row transformation to find the echelon form of the matrix. ${{R}_{1}}\to \left( -1 \right){{R}_{1}}$ gives, $\left[ \begin{matrix} 1 & -1 & 1 & -1 & 0 \\ 1 & 1 & 1 & 1 & 2 \\ 8 & 4 & 2 & 1 & 3 \\ 27 & 9 & 3 & 1 & 12 \\ \end{matrix} \right]$ ${{R}_{2}}\to {{R}_{2}}+\left( -1 \right){{R}_{1}},{{R}_{3}}\to {{R}_{3}}+\left( -8 \right){{R}_{1}},{{R}_{4}}\to {{R}_{4}}+\left( -27 \right){{R}_{1}}$ give, $\left[ \begin{matrix} 1 & -1 & 1 & -1 & 0 \\ 0 & 2 & 0 & 2 & 2 \\ 0 & 12 & -6 & 9 & 3 \\ 0 & 36 & -24 & 28 & 12 \\ \end{matrix} \right]$ ${{R}_{2}}\to \frac{1}{2}{{R}_{2}}$ gives, $\left[ \begin{matrix} 1 & -1 & 1 & -1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 12 & -6 & 9 & 3 \\ 0 & 36 & -24 & 28 & 12 \\ \end{matrix} \right]$ ${{R}_{3}}\to {{R}_{3}}+\left( -12 \right){{R}_{2}},{{R}_{4}}\to {{R}_{4}}+\left( -36 \right){{R}_{2}}$ give, $\left[ \begin{matrix} 1 & -1 & 1 & -1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & -6 & -3 & -9 \\ 0 & 0 & -24 & -8 & -24 \\ \end{matrix} \right]$ ${{R}_{3}}\to -\frac{1}{6}{{R}_{3}}$ gives, $\left[ \begin{matrix} 1 & -1 & 1 & -1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & \frac{1}{2} & \frac{3}{2} \\ 0 & 0 & -24 & -8 & -24 \\ \end{matrix} \right]$ ${{R}_{4}}\to {{R}_{4}}+\left( 24 \right){{R}_{4}}$ gives, $\left[ \begin{matrix} 1 & -1 & 1 & -1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & \frac{1}{2} & \frac{3}{2} \\ 0 & 0 & 0 & 4 & 12 \\ \end{matrix} \right]$ ${{R}_{4}}\to \frac{1}{4}{{R}_{4}}$ gives, $\left[ \begin{matrix} 1 & -1 & 1 & -1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & \frac{1}{2} & \frac{3}{2} \\ 0 & 0 & 0 & 1 & 3 \\ \end{matrix} \right]$ Now, the matrix is in echelon form. Write the system of the linear equations of the matrix: $a-b+c-d=0$ (V) $b+d=1$ (VI) $c+\frac{1}{2}d=\frac{3}{2}$ (VII) $d=3$ (VIII) Apply back substitution method: Equation (VIII) gives, $d=3$ Substitute the value of d in the equation (VII) as follows: $\begin{align} & c+\frac{1}{2}\left( 3 \right)=\frac{3}{2} \\ & c=0 \end{align}$ Substitute the values of d in the equation (VI)as follows: $\begin{align} & b+\left( 3 \right)=1 \\ & b=-2 \end{align}$ Substitute the values of b, c and d in the equation (V) as follows: $\begin{align} & a-\left( -2 \right)+\left( 0 \right)-\left( 3 \right)=0 \\ & a=1 \end{align}$ Now, substitute the values of a, b ,c and d in the function $f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d$ ,this gives, $\begin{align} & f\left( x \right)=\left( 1 \right){{x}^{3}}+\left( -2 \right){{x}^{2}}+\left( 0 \right)x+3 \\ & ={{x}^{3}}-2{{x}^{2}}+3 \end{align}$ Hence, the required cubic function is: $f\left( x \right)={{x}^{3}}-2{{x}^{2}}+3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.