Answer
The matrix $ B\left( AC \right)$ is, $ B\left( AC \right)=\left[ \begin{matrix}
-6 & -22 & -40 \\
9 & 43 & 58 \\
-14 & -48 & -94 \\
\end{matrix} \right]$
Work Step by Step
Here we need to find $ B\left( AC \right)$. Therefore consider, $\begin{align}
& B\left( AC \right)=\left[ \begin{array}{*{35}{l}}
0 & -2 \\
3 & 2 \\
1 & -5 \\
\end{array} \right]\left( \left[ \begin{array}{*{35}{l}}
2 & -1 & 2 \\
5 & 3 & -1 \\
\end{array} \right]\left[ \begin{matrix}
1 & 2 & 3 \\
-1 & 1 & 2 \\
-1 & 2 & 1 \\
\end{matrix} \right] \right) \\
& =\left[ \begin{array}{*{35}{l}}
0 & -2 \\
3 & 2 \\
1 & -5 \\
\end{array} \right]\left[ \begin{array}{*{35}{l}}
2\left( 1 \right)-1\left( -1 \right)+2\left( -1 \right) & 2\left( 2 \right)-1\left( 1 \right)+2\left( 2 \right) & 2\left( 3 \right)-1\left( 2 \right)+2\left( 1 \right) \\
5\left( 1 \right)+3\left( -1 \right)-1\left( -1 \right) & 5\left( 2 \right)+3\left( 1 \right)-1\left( 2 \right) & 5\left( 3 \right)+3\left( 2 \right)-1\left( 1 \right) \\
\end{array} \right] \\
& =\left[ \begin{array}{*{35}{l}}
0 & -2 \\
3 & 2 \\
1 & -5 \\
\end{array} \right]\left[ \begin{array}{*{35}{l}}
2+1-2 & 4-1+4 & 6-2+2 \\
5-3+1 & 10+3-2 & 15+6-1 \\
\end{array} \right] \\
& =\left[ \begin{array}{*{35}{l}}
0 & -2 \\
3 & 2 \\
1 & -5 \\
\end{array} \right]\left[ \begin{array}{*{35}{l}}
1 & 7 & 6 \\
3 & 11 & 20 \\
\end{array} \right]
\end{align}$
It can be further simplified as:
$\begin{align}
& \left[ \begin{array}{*{35}{l}}
0 & -2 \\
3 & 2 \\
1 & -5 \\
\end{array} \right]\left[ \begin{array}{*{35}{l}}
1 & 7 & 6 \\
3 & 11 & 20 \\
\end{array} \right]=\left[ \begin{matrix}
0\left( 1 \right)-2\left( 3 \right) & 0\left( 7 \right)-2\left( 11 \right) & 0\left( 6 \right)-2\left( 20 \right) \\
3\left( 1 \right)+2\left( 3 \right) & 3\left( 7 \right)+2\left( 11 \right) & 3\left( 6 \right)+2\left( 20 \right) \\
1\left( 1 \right)-5\left( 3 \right) & 1\left( 7 \right)-5\left( 11 \right) & 1\left( 6 \right)-5\left( 20 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-6 & -22 & -40 \\
3+6 & 21+22 & 18+40 \\
1-15 & 7-55 & 6-100 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-6 & -22 & -40 \\
9 & 43 & 58 \\
-14 & -48 & -94 \\
\end{matrix} \right]
\end{align}$
Thus, $ B\left( AC \right)=\left[ \begin{matrix}
-6 & -22 & -40 \\
9 & 43 & 58 \\
-14 & -48 & -94 \\
\end{matrix} \right]$