Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.5 - Complex Numbers in Polar Form; DeMoivre's Theorem - Exercise Set - Page 769: 108


The statement makes sense.

Work Step by Step

The above statement can be verified with the help of a derivation. Let ${{z}_{1}}={{r}_{1}}\left( \cos {{\theta }_{1}}+i\sin {{\theta }_{1}} \right)$ and ${{z}_{2}}={{r}_{2}}\left( \cos {{\theta }_{2}}+i\sin {{\theta }_{2}} \right)$ be two complex numbers in polar form. The product of these two complex numbers can be found by performing a simple multiplication as shown below: $\begin{align} & {{z}_{1}}\cdot {{z}_{2}}={{r}_{1}}\cdot {{r}_{2}}\left[ \left( \cos {{\theta }_{1}}+i\sin {{\theta }_{1}} \right)\left( \cos {{\theta }_{2}}+i\sin {{\theta }_{2}} \right) \right] \\ & ={{r}_{1}}\cdot {{r}_{2}}\left[ \left( \cos {{\theta }_{1}}\cdot \cos {{\theta }_{2}} \right)+\left( \cos {{\theta }_{1}}\cdot i\sin {{\theta }_{2}} \right)+\left( i\sin {{\theta }_{1}}\cdot \cos {{\theta }_{2}} \right)+\left( i\sin {{\theta }_{1}}\cdot i\sin {{\theta }_{2}} \right) \right] \\ & ={{r}_{1}}\cdot {{r}_{2}}\left[ \left\{ \left( \cos {{\theta }_{1}}\cdot \cos {{\theta }_{2}} \right)-\left( \sin {{\theta }_{1}}\cdot \sin {{\theta }_{2}} \right) \right\}+i\left\{ \left( \cos {{\theta }_{1}}\cdot \sin {{\theta }_{2}} \right)+\left( \sin {{\theta }_{1}}\cdot \cos {{\theta }_{2}} \right) \right\} \right] \\ & ={{r}_{1}}\cdot {{r}_{2}}\left[ \cos \left( {{\theta }_{1}}+{{\theta }_{2}} \right)+i\sin \left( {{\theta }_{1}}+{{\theta }_{2}} \right) \right] \end{align}$ Above, the derivation sum formula for cosines and sines is used. Hence, the provided statement make sense.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.