Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.5 - Complex Numbers in Polar Form; DeMoivre's Theorem - Exercise Set - Page 767: 31


The rectangular form of the given complex number is $4\sqrt{2}-4\sqrt{2}i$.

Work Step by Step

Consider any complex number, given by $z=x+iy$, for a complex number in rectangular form, $z=x+iy$ …… (1) The polar form is given by, $z=r\left( \cos \theta +i\sin \theta \right)$ …… (2) Here, $x=r\cos \theta \ \text{ and }\ y=r\sin \theta $. Divide the value of y by x, to get, $\tan \theta =\frac{y}{x}$ Also, the value of r is called the moduli of the complex number, given by, $r=\sqrt{{{x}^{2}}+{{y}^{2}}}$ For any complex number in polar form, $z=r\left( \cos \theta +i\sin \theta \right)$, the rectangular form is, Using (1) and (2), $\begin{align} & z=8\left( \cos \frac{7\pi }{4}+i\sin \frac{7\pi }{4} \right) \\ & z=x+iy \\ \end{align}$ Simplify it further to get, $\begin{align} & 8\left( \cos \frac{7\pi }{4}+i\sin \frac{7\pi }{4} \right)=8\cos \frac{7\pi }{4}+8i\sin \frac{7\pi }{4} \\ & =\left( 8\times \frac{1}{\sqrt{2}} \right)+i\left( 8\times -\frac{1}{\sqrt{2}} \right) \\ & =4\sqrt{2}-4\sqrt{2}i \\ & 8\left( \cos \frac{7\pi }{4}+i\sin \frac{7\pi }{4} \right)=4\sqrt{2}-4\sqrt{2}i \end{align}$ The rectangular form of the complex number is $4\sqrt{2}-4\sqrt{2}i$. The rectangular form of the given complex number is $4\sqrt{2}-4\sqrt{2}i$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.