# Chapter 5 - Section 5.2 - Sum and Difference Formulas - Exercise Set - Page 669: 54

See the full explanation below.

#### Work Step by Step

$\tan \,\left( \frac{\pi }{4}+\alpha \right)-\tan \,\left( \frac{\pi }{4}-\alpha \right)$ By using the identities of trigonometry, $\tan \,\left( \alpha +\beta \right)=\frac{\tan \,\alpha +\tan \,\beta }{1-\tan \,\alpha \tan \,\beta }$ And, $\tan \,\left( \alpha -\beta \right)=\frac{\tan \,\alpha -\tan \,\beta }{1+\tan \,\alpha \tan \,\beta }$ Now, the above expression can be further simplified as, \begin{align} & \tan \,\left( \frac{\pi }{4}+\alpha \right)-\tan \,\left( \frac{\pi }{4}-\alpha \right)=\frac{\tan \,\frac{\pi }{4}+\tan \,\alpha }{1-\tan \,\frac{\pi }{4}\tan \,\alpha }-\frac{\tan \,\frac{\pi }{4}-\tan \,\alpha }{1+\tan \,\frac{\pi }{4}\tan \,\alpha } \\ & =\frac{1+\tan \,\alpha }{1-\tan \,\alpha }-\frac{1-\tan \,\alpha }{1+\tan \,\alpha } \end{align} Now, taking LCM of $\left( 1-\tan \alpha \right)$ and $\left( 1+\tan \alpha \right)$ , \begin{align} & \frac{1+\tan \,\alpha }{1-\tan \,\alpha }-\frac{1-\tan \,\alpha }{1+\tan \,\alpha }=\frac{\left( 1+\tan \,\alpha \right)\left( 1+\tan \,\alpha \right)-\left( 1-\tan \,\alpha \right)\left( 1-\tan \,\alpha \right)}{\left( 1-\tan \,\alpha \right)\left( 1+\tan \,\alpha \right)} \\ & =\frac{\left( 1+\tan \,\alpha +\tan \,\alpha +{{\tan }^{2}}\,\alpha \right)-\left( 1-\tan \,\alpha -\tan \,\alpha +{{\tan }^{2}}\,\alpha \right)}{\left( {{1}^{2}}-{{\tan }^{2}}\,\alpha \right)} \\ & =\frac{\left( 1+2\tan \,\alpha +{{\tan }^{2}}\,\alpha \right)-\left( 1-2\tan \,\alpha +{{\tan }^{2}}\,\alpha \right)}{\left( 1-{{\tan }^{2}}\,\alpha \right)} \\ & =\frac{1+2\tan \,\alpha +{{\tan }^{2}}\,\alpha -1+2\tan \,\alpha -{{\tan }^{2}}\,\alpha }{\left( 1-{{\tan }^{2}}\,\alpha \right)} \end{align} The above expression is simplified further, \begin{align} & \frac{1+2\tan \,\alpha +{{\tan }^{2}}\,\alpha -1+2\tan \,\alpha -{{\tan }^{2}}\,\alpha }{\left( 1-{{\tan }^{2}}\,\alpha \right)}=\frac{2\tan \,\alpha +2\tan \,\alpha }{1-{{\tan }^{2}}\,\alpha } \\ & =\frac{4\tan \,\alpha }{1-{{\tan }^{2}}\,\alpha } \\ & =2\frac{2\tan \,\alpha }{1-{{\tan }^{2}}\,\alpha } \end{align} Since, $\tan 2\alpha =\frac{2\tan \alpha }{1-{{\tan }^{2}}\alpha }$. This implies, $2\frac{2\tan \,\alpha }{1-{{\tan }^{2}}\,\alpha }=2\tan \,2\alpha$ Thus, the left side of the given expression is equal to the right side, which is, $\tan \,\left( \frac{\pi }{4}+\alpha \right)-\tan \,\left( \frac{\pi }{4}-\alpha \right)=2\tan \,2\alpha$.

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.