Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Review Exercises - Page 707: 18


The required solution is $\frac{1}{2}$

Work Step by Step

We use the difference formula $\cos \left( x-y \right)$: $\cos \left( x-y \right)=\cos x\operatorname{cosy}+\sin x\sin y$ Then, using the above formula, compute the value of $\cos {{65}^{\circ }}\cos {{5}^{\circ }}+\sin {{65}^{\circ }}\sin {{5}^{\circ }}$. $\begin{align} & \cos {{65}^{\circ }}\cos {{5}^{\circ }}+\sin {{65}^{\circ }}\sin {{5}^{\circ }}=\cos \left( {{65}^{\circ }}-{{5}^{\circ }} \right) \\ & =\cos {{60}^{\circ }} \\ & =\frac{1}{2} \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.