Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Review Exercises - Page 707: 15


The required value is $\frac{\sqrt{2}-\sqrt{6}}{4}$

Work Step by Step

We know that the term $\sin \left( {{195}^{\circ }} \right)$ can be expressed as $\sin \left( {{135}^{\circ }}+{{60}^{\circ }} \right)$. Now, apply the sum formula for sin. The identity $\sin \left( C+D \right)$ is equal to the product of sine of the first angle and cosine of the second angle plus the product of the cosine of the first angle and the sine of the second angle. $\sin \left( C+D \right)=\sin C\text{cos }D+\cos C\sin D$ Now, use the sum formula in the given expression and apply the values of the trigonometric functions. $\begin{align} & sin\left( {{195}^{\circ }} \right)=\sin \left( {{135}^{\circ }}+{{60}^{\circ }} \right) \\ & =\sin {{135}^{\circ }}\cos {{60}^{\circ }}+\cos {{135}^{\circ }}\sin {{60}^{\circ }} \\ & =\frac{\sqrt{2}}{2}.\frac{1}{2}+\left( -\frac{\sqrt{2}}{2} \right).\frac{\sqrt{3}}{2} \\ & =\frac{\sqrt{2}}{4}-\frac{\sqrt{6}}{4} \\ & =\frac{\sqrt{2}-\sqrt{6}}{4} \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.