Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Section 11.4 - Introduction to Derrivatives - Exercise Set - Page 1176: 69


The statement “If $f\left( x \right)=\pi {{x}^{2}}$ describes the area of a circle, $f\left( x \right),$ with radius x, $f'\left( 5 \right)>f'\left( 2 \right)$ because the area increases more rapidly as the radius increases” makes sense.

Work Step by Step

The derivative of the function $f\left( x \right)=\pi {{x}^{2}}$ at x is given by $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( x+h \right)-f\left( x \right)}{h}$, provided this limit exists. $\begin{align} & f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{\pi {{\left( x+h \right)}^{2}}-\pi {{x}^{2}}}{h} \\ & =\underset{h\to 0}{\mathop{\lim }}\,\frac{\pi \left( {{x}^{2}}+{{h}^{2}}+2xh \right)-\pi {{x}^{2}}}{h} \\ & =\underset{h\to 0}{\mathop{\lim }}\,\frac{\pi {{x}^{2}}+\pi {{h}^{2}}+2\pi xh-\pi {{x}^{2}}}{h} \\ & =\underset{h\to 0}{\mathop{\lim }}\,\frac{\pi {{h}^{2}}+2\pi xh}{h} \end{align}$ $\begin{align} & =\underset{h\to 0}{\mathop{\lim }}\,\left( \pi h+2\pi x \right) \\ & =\pi \left( 0 \right)+2\pi x \\ & =2\pi x \\ \end{align}$ To find the value of $f'\left( 5 \right)$, substitute $x=5$ in $f'\left( x \right)=2\pi x$. $f'\left( 5 \right)=2\pi \left( 5 \right)=10\pi $ To find the value of $f'\left( 2 \right)$, substitute $x=2$ in $f'\left( x \right)=2\pi x$. $f'\left( 2 \right)=2\pi \left( 2 \right)=4\pi $ Thus $f'\left( 5 \right)>f'\left( 2 \right)$ Thus, the area increases more rapidly as the radius increases. Thus, the statement makes sense.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.