Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Cumulative Review Exercises - Page 1181: 22

Answer

The partial fraction decomposition of the expression $\frac{1}{x\left( {{x}^{2}}+x+1 \right)}$ is $\frac{1}{x}-\frac{x+1}{{{x}^{2}}+x+1}$.

Work Step by Step

Considered the expression, $\frac{1}{x\left( {{x}^{2}}+x+1 \right)}$ Step 1. Set up the partial fraction decomposition with the unknown constants. Now, use the partial fraction decomposition property for linear and quadratic factors: $\frac{1}{x\left( {{x}^{2}}+x+1 \right)}=\frac{A}{x}+\frac{Bx+C}{\left( {{x}^{2}}+x+1 \right)}$ Step 2. Multiply both sides of the resulting equation by the least common denominator. Now, multiply both sides by $x\left( {{x}^{2}}+x+1 \right)$: $\begin{align} & x\left( {{x}^{2}}+x+1 \right)\left( \frac{1}{x\left( {{x}^{2}}+x+1 \right)} \right)=x\left( {{x}^{2}}+x+1 \right)\left( \frac{A}{x}+\frac{Bx+C}{\left( {{x}^{2}}+x+1 \right)} \right) \\ & x\left( {{x}^{2}}+x+1 \right)\cdot \frac{1}{x\left( {{x}^{2}}+x+1 \right)}=x\left( {{x}^{2}}+x+1 \right)\cdot \frac{A}{x}+x\left( {{x}^{2}}+x+1 \right)\cdot \frac{Bx+C}{\left( {{x}^{2}}+x+1 \right)} \\ & 1=A\left( {{x}^{2}}+x+1 \right)+\left( Bx+C \right)x \end{align}$ Step 3. Simplify the right side of the equation. $1=A{{x}^{2}}+Ax+A+B{{x}^{2}}+Cx$ Step 4. Write both sides by descending powers, equate coefficients of like powers of $x$, and equate the constant term. $1=\left( A+B \right){{x}^{2}}+\left( A+C \right)x+A$ Now, equate the constant term: $A+B=0$, $A+C=0$ and $A=1$ Step 5. Solve the resulting linear system. Put the value of $A=1$ in $A+B=0$ and $A+C=0$ , $\begin{align} & 1+B=0 \\ & B=-1 \end{align}$ And $\begin{align} & 1+C=0 \\ & C=-1 \end{align}$ Thus, the values of the constants are $A=1,\text{ }B=-1\text{ and }C=-1$. Step 6. Substitute the values of A, B and C, and write the partial fraction decomposition. Now, $\begin{align} & \frac{1}{x\left( {{x}^{2}}+x+1 \right)}=\frac{\left( 1 \right)}{x}+\frac{\left( -1 \right)x+\left( -1 \right)}{\left( {{x}^{2}}+x+1 \right)} \\ & =\frac{1}{x}+\frac{-x-1}{\left( {{x}^{2}}+x+1 \right)} \\ & =\frac{1}{x}-\frac{x+1}{\left( {{x}^{2}}+x+1 \right)} \end{align}$ Hence, the partial fraction decomposition of the expression $\frac{1}{x\left( {{x}^{2}}+x+1 \right)}$ is $\frac{1}{x}-\frac{x+1}{{{x}^{2}}+x+1}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.