Answer
$ \lt f(x_2)$
$\gt f(x_2)$
$= f(x_2)$
Work Step by Step
Recalling the definitions of increasing, decreasing and constant functions, we have:
- $f$ is increasing on $I$ if $f(x_1)\lt f(x_2)$ when $x_1\lt x_2$
- $f$ is decreasing on $I$ if $f(x_1)\gt f(x_2)$ when $x_1\lt x_2$
- $f$ is constant on $I$ if $f(x_1)= f(x_2)$.