Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 9 - Polar Coordinates; Vectors - 9.3 The Complex Plane; De Moivre's Theorem - 9.3 Assess Your Understanding - Page 595: 49



Work Step by Step

Using De Moivre's Theorem ($(\cos{x}+i\sin{x})^n=\cos{nx}+i\sin{nx}.$) and a calculator: $[\sqrt5(\cos{(\frac{3\pi}{16})}+i(\sin{(\frac{3\pi}{16})})]^4=\sqrt5^4(\cos{(4\cdot\frac{3\pi}{16})}+i(\sin{(4\cdot\frac{3\pi}{16}})))=25\cdot(\cos{(\frac{3\pi}{4})}+i(\sin{(\frac{3\pi}{4}})))=25\cdot(\frac{-1}{\sqrt2}+\frac{1}{\sqrt2}i)=\frac{-25}{\sqrt2}+\frac{25}{\sqrt2}i=\frac{-25\sqrt2}{2}+\frac{25\sqrt2}{2}i.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.